

| Form:                                       | Form Number                                     | EXC-01-02-02A    |
|---------------------------------------------|-------------------------------------------------|------------------|
| Course Syllabus                             |                                                 | 2963/2022/24/3/2 |
|                                             | Issue Number and Date                           | 5/12/2022        |
| Number and Date of Revision or Modification |                                                 | 2/(10/12/2023)   |
|                                             | Deans Council Approval Decision Number          | 50/2023          |
|                                             | The Date of the Deans Council Approval Decision | 26/12/2023       |
|                                             | Number of Pages                                 | 06               |

| 1.  | Course Title Practical Inorganic Chemistry  |                                                                  |  |  |  |  |  |
|-----|---------------------------------------------|------------------------------------------------------------------|--|--|--|--|--|
| 2.  | Course Number                               | 0303326                                                          |  |  |  |  |  |
| 2   | Credit Hours (Theory, Practical)            | 1+2                                                              |  |  |  |  |  |
| 5.  | <b>Contact Hours (Theory, Practical)</b>    | 1 (theory) + 5 practical hrs/week                                |  |  |  |  |  |
| 4.  | Prerequisites/ Corequisites 0303321+0303106 |                                                                  |  |  |  |  |  |
| 5.  | Program Title                               | B.Sc. Chemistry                                                  |  |  |  |  |  |
| 6.  | Program Code                                | 0303                                                             |  |  |  |  |  |
| 7.  | School/ Center                              | The University of Jordan                                         |  |  |  |  |  |
| 8.  | Department                                  | Science                                                          |  |  |  |  |  |
| 9.  | Course Level                                | Chemistry                                                        |  |  |  |  |  |
| 10. | Year of Study and Semester (s)              | Second Year                                                      |  |  |  |  |  |
| 11  | Other Department(s) Involved in             | 3 <sup>rd</sup> Year Students/2 <sup>nd</sup> semester 2023-2024 |  |  |  |  |  |
| 11. | <b>Teaching the Course</b>                  |                                                                  |  |  |  |  |  |
| 12. | Main Learning Language                      | English                                                          |  |  |  |  |  |
| 13. | Learning Types                              | □ □ Face to face learning □ Blended □ Fully online               |  |  |  |  |  |
| 14. | <b>Online Platforms(s)</b>                  | <b>rms(s)</b> □Moodle ⊠Microsoft Teams                           |  |  |  |  |  |
| 15. | Issuing Date                                | 6-8-2024                                                         |  |  |  |  |  |
| 16. | Revision Date                               | 6-8-2024                                                         |  |  |  |  |  |

## 17. Course Coordinator:

| Name: Dr. Murad A. AlDamen, Prof.              | Contact hours: 8:00-10:00 Mon. Wed. |
|------------------------------------------------|-------------------------------------|
| Office number: Chemistry 2 <sup>nd</sup> floor | Phone number:                       |
| Email: maldamen@ju.edu.jo                      |                                     |



#### **18. Other Instructors:**

| Name:          |  |
|----------------|--|
| Office number: |  |
| Phone number:  |  |
| Email:         |  |
| Contact hours: |  |

#### **19. Course Description:**

This course focuses on the preparation and characterization of coordination complexes using various ligands such as oxalate, acetylacetonate, ethylene diamine, and acetate, among others. The curriculum also includes a series of lectures that delve into the theoretical aspects of inorganic synthesis and structure elucidation.

Upon successful completion of this course, students will be able to independently conduct the experimental preparation of coordination complexes. Additionally, students will gain proficiency in characterizing these complexes through techniques such as melting point determination, molecular weight analysis, room temperature magnetic measurements, conductance studies, and spectral analysis (including FTIR and UV).

**20. Program Intended Learning Outcomes:** (To be used in designing the matrix linking the intended learning outcomes of the course with the intended learning outcomes of the program)

Upon successful completion of this course, students will be able to:

SO-1. **Problem Solving**: Graduates will be able to apply mathematical and scientific knowledge to identify, formulate, and solve technical or scientific problems relevant to the discipline of chemistry. SO-2. **Design**: Graduates will be able to use their understanding of chemistry concepts and principles to formulate and design systems, processes, procedures, or programs to meet desired goals and outcomes.

SO-3. **Experimental Skills**: Graduates will be able to design, conduct, and analyze experiments or test hypotheses, utilizing appropriate chemical techniques and scientific judgment to draw meaningful conclusions.

SO-4. **Communication**: Graduates will be able to communicate scientific information effectively and accurately to a range of audiences, including both technical and non-technical audiences.

SO-5. Ethics and Global Context: Graduates will understand and apply ethical and professional responsibilities in the context of the impact of technical and scientific solutions on global, economic, environmental, and societal issues.

SO-6. **Teamwork**: Graduates will be able to work effectively as part of a team, establishing goals, planning tasks, meeting deadlines, and analysing risk and uncertainty in the context of chemistry-related projects and initiatives.

SO-7. Handling Chemicals: An ability to apply the proper procedures for safe handling of chemicals.



**21. Course Intended Learning Outcomes:** (Upon completion of the course, the student will be able to achieve the following intended learning outcomes)

CLO1: Apply Inorganic Chemistry Concepts: Utilize theoretical concepts and models from inorganic chemistry to analyze and solve practical laboratory problems effectively.

CLO2: Master Laboratory Procedures: Demonstrate proficiency in common techniques and procedures used in inorganic chemistry laboratories, including the preparation and handling of chemical substances.

CLO3: Handle Tools Safely and Effectively: Safely and accurately use laboratory equipment and instruments to obtain precise measurements and spectra, adhering to best practices.

CLO4: Analyze and Compare Experimental Data: Systematically organize and analyze experimental results, comparing findings with literature data to draw meaningful conclusions.

CLO5: **Develop Comprehensive Laboratory Reports**: Craft detailed and coherent reports for each practical session, including clear descriptions and interpretations of experimental work and results.

CLO6: Adhere to Safety and Waste Management Protocols: Independently apply laboratory safety protocols and waste management practices to ensure a safe and environmentally responsible working environment.

CLO7: **Communicate Scientific Findings**: Extract and articulate relevant conclusions about experimental methods and product characterization, and effectively communicate laboratory work through both oral presentations and written reports.

| CLO | The learning levels to be achieved |               |          |              |            |          |  |
|-----|------------------------------------|---------------|----------|--------------|------------|----------|--|
|     | Remembering                        | Understanding | Applying | Analysing    | evaluating | Creating |  |
| 1   |                                    |               |          |              |            |          |  |
| 2   |                                    |               |          |              |            |          |  |
| 3   |                                    |               |          | $\checkmark$ |            |          |  |
| 4   |                                    |               |          | $\checkmark$ |            |          |  |
| 5   |                                    |               |          |              |            |          |  |
| 6   |                                    |               |          |              |            |          |  |
| 7   |                                    |               |          |              |            |          |  |



22. The matrix linking the intended learning outcomes of the course with the intended learning outcomes of the program:

| #CLOs | <b>SO(1)</b> | <b>SO(2)</b> | <b>SO(3)</b> | <b>SO(4)</b> | SO(5)        | <b>SO(6)</b> | <b>SO(7)</b> |
|-------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| 1     | $\checkmark$ | $\checkmark$ |              |              |              |              |              |
| 2     | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |              | $\checkmark$ |              |
| 3     |              |              | $\checkmark$ |              |              | $\checkmark$ |              |
| 4     |              |              | $\checkmark$ | $\checkmark$ |              |              |              |
| 5     |              |              |              |              | $\checkmark$ |              |              |
| 6     |              |              |              |              |              |              | $\checkmark$ |
| 7     |              |              |              |              | $\checkmark$ |              |              |



## 23. Topic Outline and Schedule:

| Week | Lecture    | Topic                                               | CLO/s Linked to the Topic | Learning Types<br>(Face to Face/ Blended/ Fully<br>Online) | Platform Used | Synchronous / Asynchronous | Evaluation Methods | Learning Resources |
|------|------------|-----------------------------------------------------|---------------------------|------------------------------------------------------------|---------------|----------------------------|--------------------|--------------------|
| 1    | Lecture 1  | Introduction and safety rules                       | 1,6                       | F-to-F                                                     |               |                            | FO                 | M/S                |
|      | Lab. 1     | EXP1 Cr acetylacetonate and its derivatives         | all                       | F-to-F                                                     |               |                            | F R/O              | M/S                |
| 2    | Lecture 2  | Molar conductance                                   | 2,3                       | F-to-F                                                     |               |                            | FO                 | M/S                |
|      | Lab. 2     | EXP1 characterization                               | all                       | F-to-F                                                     |               |                            | F R/O              | M/S                |
| 3    | Lecture 3  | Molar mass determination                            | 2,3                       | F-to-F                                                     |               |                            | FO                 | M/S                |
| 5    | Lab. 3     | EXP1 characterization                               | all                       | F-to-F                                                     |               |                            | F R/O              | M/S                |
| 4    | Lecture 4  | Magnetic measurements                               | 2,3                       | F-to-F                                                     |               |                            | FO                 | M/S                |
| т    | Lab. 4     | EXP2 Cr/Co coordination isomerism/characterization  | All                       | F-to-F                                                     |               |                            | F R/O              | M/S                |
| 5    | Lecture 5  | Introduction to spectroscopy                        | 2,3                       | F-to-F                                                     |               |                            | FO                 | M/S                |
| 5    | Lab. 5     | EXP3 Cr/Co oxalate/characterization                 | All                       | F-to-F                                                     |               |                            | F R/O              | M/S                |
| 6    | Lecture 6  | UV-visible spectra 1                                | 2,3                       | F-to-F                                                     |               |                            | FO                 | M/S                |
| 0    | Lab. 6     | EXP6 Ni acetylacetonate complexes/ characterization | All                       | F-to-F                                                     |               |                            | F R/O              | M/S                |
| 7    | Lecture 7  | UV-visible spectra 2                                | 2,3                       | F-to-F                                                     |               |                            | FO                 | M/S                |
| /    | Lab. 7     | EXP7 cobalt penta/hexamine/ characterization        | All                       | F-to-F                                                     |               |                            | F R/O              | M/S                |
| 8    | Lecture 8  | UV-visible spectra 3                                | 2,3                       | F-to-F                                                     |               |                            | FO                 | M/S                |
| 0    | Lab. 8     | EXP8 Fe(ox) <sub>3</sub> / characterization         | All                       | F-to-F                                                     |               |                            | F R/O              | M/S                |
| 9    | Lecture 9  | FTIR measurements                                   | 2,3                       | F-to-F                                                     |               |                            | FO                 | M/S                |
| ,    | Lab. 9     | EXP9 different acac complexes/characterization      | All                       | F-to-F                                                     |               |                            | F R/O              | M/S                |
|      | Lecture 10 | Thermodynamic aspects of synthesis                  | 2,3                       | F-to-F                                                     |               |                            | FO                 | M/S                |
| 10   | Lab. 10    | EXP10 different acac complexes/characterization     | All                       | F-to-F                                                     |               |                            | F R/O              | M/S                |
| 11   | Lecture 11 | Kinetic aspects of synthesis                        | 2,3                       | F-to-F                                                     |               |                            | FO                 | M/S                |
| 11   | Lab. 11    | EXP11 different acac complexes/characterization     | All                       | F-to-F                                                     |               |                            | F R/O              | M/S                |
| 10   | Lecture 12 | Lab work discussion 1                               | 4,5                       | F-to-F                                                     |               |                            | FO                 | M/S                |
| 12   | Lab. 12    | EXP12 different acac complexes/characterization     | All                       | F-to-F                                                     |               |                            | F R/O              | M/S                |
| 10   | Lecture 13 | Lab work discussion 2                               | 4,5                       | F-to-F                                                     |               |                            | FO                 | M/S                |
| 13   | Lab. 13    | EXP13 further characterization                      | All                       | F-to-F                                                     |               |                            | F R/O              | M/S                |
| 1.4  | Lecture 14 | Lab work discussion 3                               | 4,5,7                     | F-to-F                                                     |               |                            | FO                 | M/S                |
| 14   | Lab. 14    | EXP14 further characterization and product checkin  | all                       | F-to-F                                                     |               |                            | F R/O              | M/S                |

R = report, O = oral exam, F = final written exam, F-to-F = face to face, M/S manual/lecture slides



### 24. Evaluation Methods:

Opportunities to demonstrate achievement of the ILOs are provided through the following assessment methods and requirements:

| Evaluation Activity         | Mar<br>k | Topic(s)               | CLO/s<br>Linked<br>to the<br>Evaluati<br>on<br>activity | 2O/s<br>lked<br>the Period (Week)<br>luati<br>on<br>ivity |        |
|-----------------------------|----------|------------------------|---------------------------------------------------------|-----------------------------------------------------------|--------|
| Report + product<br>quality | 30       | All experiments        | All                                                     | At the end of each exp.                                   | In lab |
| Oral Exam (MID)             | 20       | First 5<br>experiments | 1,2,3,6                                                 | After 5 performing experiments                            | In lab |
| Work evaluation             | 10       | All experiments        | All                                                     | After performing all experiments                          | In lab |
| Final (written)             | 40       | All experiments        | 1,2,4,7                                                 | At the end of semester                                    | -      |

### 25. Course Requirements:

The laboratory is provided with all required equipment



#### **26. Course Policies:**

A- Attendance policies: All students are expected to follow the of attendance policies of the University of Jordan,

absences exceeding 15% of total number of class meeting (2 labs) will result in F grade or course drop.

B- Absences from exams and handing in assignments on time: University rules and regulations regarding make-up exams.

C- Health and safety procedures: see MSDS instructions.

D- Honesty policy regarding cheating, plagiarism, misbehavior: University rules and regulations.

E- Grading policy: University rules and regulations

F- Available university services that support achievement in the course: N/A

#### 27. References:

We upload on google drive a dynamic manual, this will help the students to participate in modifying the experiments and optimize the reactions: <u>https://docs.google.com/document/d/1rfXDWAeP5iB\_xht-yu\_kR1KXCUYFumlkMQ-ba1yEAWU/edit?usp=sharing</u>

1. Inorganic Chemistry, by Catherine E. Housecroft and Alan G. Sharpe, 5<sup>th</sup> edition, Pearson, 2018.

2.Bailar, J. C., Jones, E.M. (1939) Inorg. Synth., 1, 37.

3. Charles, R.G. (1963) Inorganic Synthesis 7, 183-184.

4.Collman, J.P. (1965). Angew. Chem. Int. Ed. 4, 132-138.

5.Collman, J.P. Goldby, S., Young, W.L. III & Marshall, R. (1962). Inorg. Chem. 1, 704-710.

6.Collman, J.P., Young, W.L. III & Kauffman, G.B. (1963). Inorg. Synth. 7, 205-207.

7.Combes, C.R., (1890). Acad. Sci., iii 272.

8.Goodgame, D.M.L. et. al, (1965), Inorg. Chem. 4, 823.

9. Szafran, Zvi; Pike, R.M and Singh, M, Wiley (1991).

10. SciFinder® at elibrary.ju.edu.jo

### 28. Additional information:

 Project acac minibook and the updated Lab manual

 Name of the Instructor or the Course Coordinator:
 Signature:
 Date: 26-8-2024

 Dr. Murad AlDamen, Prof.
 Signature:
 Date: 26-8-2024

 Name of the Head of Quality Assurance
 Signature:
 Date:

 Committee/ Department
 Dr. Haytham Saadeh, Prof.
 Date:



| Name of the Head of Department                                          | Signature: | Date: |  |
|-------------------------------------------------------------------------|------------|-------|--|
| <b>Dr. Firas Awwadi, Prof.</b><br>Name of the Head of Quality Assurance | Signature: | Date: |  |
| Committee/ School or Center<br>Dr. Murad A. AlDamen, Prof.              |            |       |  |
| Name of the Dean or the Director<br>Dr. Mahmoud I. Jaghoub, Prof.       | Signature: | Date: |  |